sda.dashboard.pipeline.flask_cache_pipeline =========================================== .. py:module:: sda.dashboard.pipeline.flask_cache_pipeline .. autoapi-nested-parse:: Flask-Caching Based Pipeline Implementation. ========================================== This module implements a simplified, robust pipeline using flask_caching instead of custom caching logic. This approach provides: 1. Automatic memoization of pipeline stages 2. Native Flask/Dash integration 3. Easy cache invalidation 4. Production-ready scaling (Redis support) 5. Elimination of callback loops through proper caching Classes ------- .. autoapisummary:: sda.dashboard.pipeline.flask_cache_pipeline.FlaskCachePipeline Module Contents --------------- .. py:class:: FlaskCachePipeline(app, verbose = False) Flask-caching based pipeline for SDA Dashboard. .. py:attribute:: verbose :value: False .. py:attribute:: error_handler .. py:attribute:: cache .. py:method:: load_data(test_name) Load and validate test data (cached). .. py:method:: select_columns(test_name, user_selection = None) Apply column selection logic (cached). .. py:method:: configure_filters(test_name, user_selection = None) Configure filters for selected columns (cached). .. py:method:: apply_filters(test_name, user_selection = None, applied_filters = None) Apply row filters to data (cached). Filter logic: Start with everything, remove what we don't want. - filter_value contains the SELECTED values (what user wants to keep) - We exclude the UNSELECTED values (all options minus selected values) - User interaction: unselect values to remove them from view .. py:method:: create_plot(test_name, user_selection = None, applied_filters = None, plot_config = None) Create plot from filtered data (cached). .. py:method:: clear_cache(test_name = None) Clear cache for specific test or all cache. .. py:method:: get_cache_stats() Get cache statistics.