sda.dashboard.pipeline ====================== .. py:module:: sda.dashboard.pipeline .. autoapi-nested-parse:: Data Pipeline Framework for SDA Dashboard. ============================================= This module implements a simplified, efficient pipeline architecture using Flask-Caching: 1. Load (& validate) → 2. Filter columns → 3. Filter rows → 4. Plot The Flask-Caching Pipeline provides: - Automatic memoization of pipeline stages - Native Flask/Dash integration - Easy cache invalidation - Production-ready scaling (Redis support) - Elimination of callback loops through proper caching Submodules ---------- .. toctree:: :maxdepth: 1 /_api/sda/dashboard/pipeline/flask_cache_pipeline/index Classes ------- .. autoapisummary:: sda.dashboard.pipeline.FlaskCachePipeline Package Contents ---------------- .. py:class:: FlaskCachePipeline(app, verbose = False) Flask-caching based pipeline for SDA Dashboard. .. py:attribute:: verbose :value: False .. py:attribute:: error_handler .. py:attribute:: cache .. py:method:: load_data(test_name) Load and validate test data (cached). .. py:method:: select_columns(test_name, user_selection = None) Apply column selection logic (cached). .. py:method:: configure_filters(test_name, user_selection = None) Configure filters for selected columns (cached). .. py:method:: apply_filters(test_name, user_selection = None, applied_filters = None) Apply row filters to data (cached). Filter logic: Start with everything, remove what we don't want. - filter_value contains the SELECTED values (what user wants to keep) - We exclude the UNSELECTED values (all options minus selected values) - User interaction: unselect values to remove them from view .. py:method:: create_plot(test_name, user_selection = None, applied_filters = None, plot_config = None) Create plot from filtered data (cached). .. py:method:: clear_cache(test_name = None) Clear cache for specific test or all cache. .. py:method:: get_cache_stats() Get cache statistics.